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ABSTRACT Recently, we isolated a temperate bacteriophage, Pseudomonas phage
Dobby, from a calcium oxalate kidney stone. Here, we present the complete ge-
nome of the bacterial host harboring this phage, Pseudomonas aeruginosa UMB2738.
From the analysis of the genome sequence, five additional prophage sequences
were identified.

hile bacteria are the cause of magnesium-ammonium-phosphate (struvite) kid-

ney stones (1), they may also contribute to calcium kidney stones (2-5). Studies
have successfully cultured bacteria from kidney stones (2-8) and have most frequently
isolated Escherichia coli and Pseudomonas species (9). In a recent study by Barr-Beare et
al. (5), E. coli and Pseudomonas aeruginosa were cultured from two calcium oxalate
(CaOx) stones. From one of these stones from a male patient, two P. geruginosa
colonies, identified via 16S rRNA gene sequencing, were isolated (5). In one of these
isolates, UMB2738, the ¢CTX-like temperate Pseudomonas phage Dobby was isolated
and characterized (10). Similarly, a temperate phage was induced from the other P.
aeruginosa isolate, UMB2744. This prompted us to sequence both of these bacterial
isolates to ascertain first if they belonged to the same strain and, subsequently, to
characterize P. aeruginosa from CaOx stones.

P. aeruginosa strains UMB2738 and UMB2744 were isolated and cultured using the
expanded quantitative urinary culture (EQUC) protocol (11) as described by Barr-Beare
et al. (5) and stored at —80°C. From this freezer stock, each isolate was streaked onto
a 1.7% LB agar plate and grown overnight at 37°C. A single colony from each plate was
selected and grown in LB liquid medium overnight at 37°C with shaking with 5-mm
sterile glass beads to minimize biofilm formation. DNA was extracted using the Qiagen
DNeasy UltraClean microbial kit and quantified using a Qubit fluorometer. DNA was
sent to the Microbial Genomic Sequencing Center (MiGS) at the University of Pittsburgh
for sequencing. Briefly, DNA was enzymatically fragmented using an lllumina tagmentation
enzyme, and indices were attached using PCR. The barcoded samples were multiplexed on
an lllumina NextSeq 500 flow cell, producing 1,053,541 and 943,073 pairs of 151-bp reads
for UMB2738 and UMB2744, respectively. Default parameters were used for all software
tools unless otherwise noted. Raw reads were trimmed using Sickle v1.33 (https://github
.com/najoshi/sickle) and then assembled using SPAdes v3.13.0 (parameters, only-assem-
bler; k = 55,77,99,127) (12). The assembled contigs were concatenated for each sample
and compared via the progressiveMauve algorithm v1.1.1 (13) in Geneious Prime
(Biomatters Ltd., Auckland, New Zealand). This comparison revealed that UMB2738 and
UMB2744 had identical genomes (pairwise identity = 100%). Thus, the genome was
reassembled with all 13,523,760 trimmed reads from both barcodes using SPAdes and
the same parameters. Here, we refer to this strain as UMB2738.
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The genome assembly of P. aeruginosa UMB2738 includes 87 contigs and consists of
6,720,267 bp with a GC content of 66.15%. The genome coverage is 79.35X, calculated
by BBMap v38.47 (https://sourceforge.net/projects/bbmap/), and the assembly has an
N5, score of 135,797. Genome annotation was performed using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) v4.8 (14). No CRISPR/Cas genes or arrays were
found within the genome by CRISPRCasFinder (15). The genome encodes 6,298 protein
coding genes, three rRNA operons, and 57 tRNAs. As this strain was the source of the
temperate Pseudomonas phage Dobby (10), the genome assembly was queried via
blastn (16) for the Dobby sequence (GenBank accession number MK034952) and
located in the first, largest contig of the assembly. The P. aeruginosa UMB2738 genome
was also screened for phage sequences using VirSorter v1.0.5 (17). Six prophage
sequences were predicted, including the region encoding Dobby. VirSorter also iden-
tified Pseudomonas phage Pf1 and a relative of Pseudomonas phage vB_Pae_CF79a
(GenBank accession number MK510971; query coverage, 45%; identity, 97.18%). The
other two phage sequences predicted do not exhibit any sequence homology to
characterized phage sequences.
Sequencing of this bacterial isolate will inform our future work with Pseudomonas
phage Dobby, which is just one of the phages harbored by this bacterium. Furthermore,
the availability of this genome, representative of bacteria within kidney stones, can add
insight into future studies of the urinary tract microbiota.
Data availability. This whole-genome shotgun (WGS) project has been deposited in
GenBank under the accession number VSIZ00000000. Raw sequence reads are depos-
ited under accession numbers SRR9992785 and SRR9992786. The WGS and SRA records
are associated with BioProject number PRINA316969.
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